
Report

Tasks

• scanKeysTask : This task executes every 50ms and is responsible for
processing key presses by the user, including the joystick used for pitch
bending and volume modding. It reads the new state of the keys and
combines this with the previous state to detect when a key was pressed or
released. As our system supports polyphony, we require the dynamic
allocation of multiple phase accumulators for key presses which is handled by
this task.

• displayUpdateTask : Executes every 100ms and is responsible for controlling
the display (resulting in a 10Hz refresh rate) - functionality includes being able
to show all currently pressed keys, the volume level, octave setting and wave
type/sound profile, as well as other sub menus. An arrow indicates rotation
direction of the knob that need to be rotated to advance to or return from the
current menu, and the knob that needs to be rotated is indicated by the line
number on the display. From the main menu, there is a separate advanced
menu accessible by rotating knob 4, which contains more advanced features:
the ability to set keyboard as a Host (receiver) or an Agent (sender), and the
option to access the recording and playback features of the synthesiser.

• decodeTask : This task decodes received messages from msgInQ and
dynamically allocates pressed keys and deallocates released keys from the
accumulator for the Host - enabling it to read keypresses from other
keyboards.

• CANSend : This task is used to send key event data (whether a key was
pressed or released) to the Host from the Agents. The information of a key
event is encoded into an 8-bit unsigned integer that is sent in an outgoing
message from msgOutQ.

• playbackTask : This task is responsible for the playback feature of the
synthesiser and executes every 50ms, to match the scanKeysTask frequency -
ensuring that playback sounds identical to the original recording. This task is
enabled only when the playback menu is shown.

Interrupts:

• CAN_RX_ISR : This interrupt is called when a message is received from
another keyboard through the CAN bus. This message is added to msgInQ.

• CAN_TX_ISR : This interrupt is called when a CAN message is being sent
through the CAN bus. It uses counting semaphore to ensure that there are
enough mailboxes (more details in shared resources section).

• sampleISR : This interrupt runs at 22kHz and is responsible for audio
generation. To generate audio, a 32-bit phase accumulator is incremented
depending on the currently pressed key, causing it to overflow at the
frequency of that key. As notes that are an octave higher are double the
frequency of the notes in the current octave, a left shift of the phase
accumulator depending on the octave yields the desired frequency for the key
at the current octave, meaning only the increment sizes of 12 semitones need
to be known. This is represented by the stepSizes array. Depending on the
value of WAVETYPE, denoting the current sound profile, this interrupt will use
the value within the accumulators to generate the type of wave that is
required, effectively behaving as a DAC. Our system supports 4 different wave
types or sound profiles:
 ⦁ Sawtooth wave
 ⦁ Square wave (displayed as Pulse)
 ⦁ Sine wave
 ⦁ Triangle wave

In this interrupt, additional audio modifications are also processed, such as
octave scaling, pitch bending, volume modding and polyphony, which is done
by taking the average of all the waves generated by each key from the
different accumulators. The number of accumulators available in the system is
equal to the POLYPHONY constant defined in OurLibrary.h. Changing this
constant changes the amount of simultaneous key presses that will be
pressed.

Performance Testing

For the timing analysis, we added pre-processor directives that switch the system
from a functional build to a test build. Enabling the '#define TEST_MODE' directive
puts the system in this state, and will output the time taken for the worst-case
execution time for each task and interrupt. Additionally, the directive '#define
STAT_ONLY' is enabled to print only the statistics to use for graph plotting.

#define TEST_ITERATIONS 32 tells the system to execute every task 32 times and
average the results.

Tasks Priority

Minimum
Initiation
Interval τi

(ms)

Worst-case
Execution

Time Ti (ms)

CPU
Utilisation

(%)

playbackTask 5 50 0.002 0.004

scanKeysTask 4 50 0.095 0.190

decodeTask 3 25.2 0.000 0.000

CANSend &
CAN_TX_ISR 2 60 0.008 0.013

displayUpdateTask 1 100 17.753 17.753

sampleISR Interrupt 0.0455 0.017 37.363

CAN_RX_ISR Interrupt 0.7 0.001 0.14

Total 17.876 55.463

The above results were collected with POLYPHONY set to 8, and 32 executions were
recorded before averaging them. As our system is to sensitive to the POLYPHONY
constant, denoting the number of simultaneous key presses the system will process,
a graph below is shown of how changing the POLYPHONY constant affects the total
CPU usage by each task.

From the graph, it is clear that the system can support up to 38-key polyphony in
worst-case conditions before becoming unstable. Our system is set to 8 key
polyphony by default.

Shared Resources
All shared resources have been protected with the use of mutexes, semaphores,
atomic operations and message queueing.

• keyArray : Used in scanKeys() to identify and store the current state of key
presses in a matrix. The mutex handle keyArrayMutexensures the array is
only accessed atomically and semaphores are used to control access to the
array.

• currentStepSize : Keeps track of a key frequency based on the octave offset
from the middle octave. This is used during accumulator allocation but also
in sampleISR.

• accumulatorMap, pianoKeyMap : accumulatorMap is used to keep track of
what accumulators are mapped to what keys. The deallocation and allocation
of accumulators is handled dynamically depending on key events from either
the CAN Bus or the Host's physical keys being pressed. pianoKeyMap serves
to provide fast reverse lookup so that indexing into this array with the
keyNumber reveals whether the key has an accumulator, as opposed to

looping through accumulatorMap to determine if an accumulator was
assigned to the key. They are written to in
the scanKeysTask(), playbackTask() and decodeTask()*. Writes are done
atomically.

• ISMASTER : A Boolean that represents whether the synthesiser is a Host or
Agent. It is accessed in scanKeysTask(), decodeTask(), sampleISR() and is
written to in scanKeysTask(), therefore an atomic operation is necessary.

• OCTAVE, VOLUMEMOD : These are settings that are modify the audio of the
synthesiser. Like isMaster, the same protections are used as these variables
are accessed in multiple tasks and interrupts.

• JOYSTICKX, JOYSTICKY : These are used for pitch bending and volume
shifting. All of these are accessed in the scanKeys() task and sampleISR so
atomic stores are used.

• ISRECORDING, ISPLAYBACK : These are Boolean states to determine
whether the system is recording or performing playback. Both are accessed
in scanKeysTask(), displayUpdateTask(). ISRECORDING is also accessed
in accumulatorMap allocation/deallocation, thus these operations are atomic.

• CURRENTKEY, LASTKEY : Stores the key that was last played and the current
key being played. They uses atomic stores as they are accessed
in displayUpdateTask() and playbackTask().

• CAN_TX_Semaphore : STM32 CAN supports 3 mailboxes so a counting
semaphore of maximum value 3 is used to restrict access to threads if there
are more than 3 simultaneous attempts to access it. This is accessed
by CANSend() and CAN_TX_ISR.

Task Dependencies

Our aim was to make each thread as independent as possible and eliminate circular
dependencies to prevent the possibility of deadlock. As seen above, the main
dependency in our system is the CANSend task which is dependent
on scanKeysTask. If msgoutQ is empty, CANSend will block until a message is
added to the queue.

Advanced Features

Polyphony

Our system supports the simultaneous processing of multiple key presses.

Multi-Page Menu

The user is able to navigate to different displays depending on what features they
would like to access.

Host/Sender Configuration

Allows each keyboard to identify as a Host or Agent through the advanced menu.
Sound will only play through the Host, and only the Host can change audio settings
(except octave as that is local to each synthesiser).

Recording and Full Playback of Sequence

Our system supports the ability to record a finite sequence of key presses (which can
be configured using the MAXKEYS constant, default 512) featuring a timer on display
and playback through the Host. The recording supports polyphony.

Pitch-bend and Volume Mod

Using the joystick, the user can greatly change the sound being produced; moving
the joystick in the Y direction results in a pitch-bend, increasing or decreasing the
frequency of the sound. Moving the joystick in the X direction results in fine volume
control.

Sound Profiles

Our system supports 4 sound profiles (Sawtooth, Square, Sine and Triangle). The
corresponding waveforms from the DAC were captured using a Picoscope and are
shown below:

