Imperial College
London 231 June 2022

MARS SQUAD

2nd Year EEE/EIE Group Project Report
ELEC50008 - Engineering Design Project 2

Rohan Gandhi (01845920), Aleera Ewan (01857182), Valia Giannopoulou (01933859), Omar Zeidan
(01854974), Anthony Jones (01857797), James McManus (01870085), Sam Hesketh Fatchen (01861697)

Title and the name of the lecturer the work is submitted to: Adam Bouchaala

Github link: https://github.com/ozeidan9/mars-rover

Table of Contents

3 000 oo L 00 4
1.1 Project ReQUITEMENTS.....cci i s e e s e s n e s 4

1.2 Project Management & Inter-module commuUNICatiON........ccoveiieiiier e 4

2 CommAaNd SUDSYSEEIN. ..ot e rr e e e e e ee s erae s saeees e s sae e es e saneeases saneen sreeennessrnens 4
2.1 USET INTEITACE .. v ittt ettt ettt ettt e e ea e e e e st e eae e s ees e e eae e s een e se ann e 5

2.1 W EDSTEO .ttt ettt ettt s e n e e £ en e ere e ea e e e eee e ee e ereen sreeennes 5

2.1.2 MODbile APPlICAtION ..ottt e e e 5

2.2 Data PrOCESSITIE . .ceiiiueiiiiteieisie e sie e sie e st ee s es et e sn e s ss e s et e sas e et e eesnbe e esbeeeseeeesnbeeennne e nneaenens 5

7 N O <SOSR PSPPI 5

072070\ - 0] 11 VTP 6

2207205 XD 100 1 (0) o T 6

R30I LT] (=) 1 o PP 7
T 0 o0 Tor 1B =) 4 o) PP 7

T2\ o o) oo s) OO PSP ESRPS RPN 7

e 00 1 1= S AN L8N A =) 1 1 TP 8
4.1 Photovoltaic Panels.... ..ot e e e e e e e e e e e 8

4.2 Maximum Power Point TraCKing.......cccccccuiiriieiis i ettt e s 10

4.3 USB Battery Charging.......cuoiriiiee ittt s s e s s s s s sn e e 10

R S F L= A o S 0=) 01 V= PO RPETRPRRPR 11

4.5 Range Capability.......cccoiriiiiii i s e e e 11

5 RAdar SUDSYSEEIMN...... .ot et e e e e e e e e e e sae e e sae e e e e e nee e e een seeen e en e 12
5.1 INPUL SIZNAL.. i e e e e e e s n s 12

5.2 MEASUTEIMEIIES ... e cueeeuiercueeeseseueeesseeee e neeen e saeees e saeees e sas e eeen e aee £ es e eaeeen e eaeeenessnsensreennen ses 12

5.3 SIgNAl PrOCESSING .. uiitiitiiir ittt ettt e s e b r s e she e s e e sne s en e e nre e 13

5.4 Analogue to Digital.......ccco oo s 13

6 FPGA and Camera SUDSYSEEIN oot s e s e s e s s e e n e s e s en e e srnee s sne s 14
5.1 IMaGE PrOCESSOT ... ettt sttt e et e e e e e e s e e e en e e re e es e eae e see e s e neeeneen sreennne sreeen 14

6.1.1 HSV CONVEISION ..cciuiiiiiiiirie e it e e sne e sn e sn e sn e s e e 14

6.2 Filtering and ball detection..........coviiiiiiiiiiic e e e 15

(OS24 000 o bR =e (= oot (o) o SRR 16

(O3 D) £ =Y e Tt 0= (o 11 = (o] LSS 16

(SRSTNY 30 0000} 5510 1000} Uor= U U)o HS PSSP 17

7 CONrol SUDSYSEEIM........ociiiiiiie e s s e e e e s e sar e sr e srees sanees sansessnsessanses snsmnesennenns 17
8 B D) 4 PSPPSR 17

4872 . U - 1 o PSP 18

7285 T4 3T) o PSSP 18

o200 L=y o 7 18) o PR 18
1o 2 070 1 Lo 11 1)) 4 PSRRI 18
331 0) U0 e o2 1 0] 4 L TP 19
7L 1] 013 Lo 0 R 20

Abstract

“This project aims to design and build an autonomous rover system for exploring an alien colony on
Mars”. Autonomous rover systems have been vital for space exploration, especially in regions that are
dangerous for humans to navigate or difficult to access. A reliable autonomous system with minimal
human assistance is therefore necessary to collect data and navigate the Mars terrain. The following
report outlines the design and implementation of a rover that satisfies all the requirements to navigate
through the mars landscape.

1 Introduction

1.1 Project Requirements

The project is split into seven subsystems, each with its own requirements to enable the rover to
navigate the test arena and build “a map showing the locations of aliens and their underground power
infrastructure.” Specific requirements for each subsystem were devised to ensure that the entire system
functions cohesively. Such requirements are outlined below:

req [Requirements List]

<<requirement>> <<requirement>> <<requirement>> *| <<requirement>> <<requirement>> <<requirement>>
Command Control Drive Energy Radar Vision
Text = "Module” Text = "Module" Aext = "Module i) Ly Text = "Module” Text = "Module" Text = "Module”
E ’ E E ii [E 3
<<requirement>> <<requirement>> <<requirement>> <<requirement>> <<requirement>> <<requirement>>
|| Battery Level Communication Controlled Charge USB via Identify Location of Identify Aliens and
Text = "Oplional between ESP32, Movement along a Solar Panel Reflective Fan Buildings in the
3 FPGA, Motor Forward Axis and maximising Charge Teat = "Requirement” Presence of
Drivers, Radar, and Rotationally Speed : Background Noise

Optical Sensor

<<requirement=> Text = "Requirement”
Rover Range and Text = "Requirement" B
RtB Functionality B

<<requirement>>

Text = "Requirement"

Text = "Requirement’

<<requirement>>
Estimate Remaining
Battery while Rover

<<requirement=> Calibration and PID
Send and Receive G to
<<requirement> Cumrrslzrrfmm Prevent Drift
Map Generation and Text = "Optional
] Plotting Text = *Requirement" B
B

Text = "Requirement”
M <<requirement>>
Accurate Position

<<requirement>> : with
Automated Scouting Optical Sensor

Algorithm Text = "Requirement”
B

Text = "Requirement”
[

<<requirement>>
Automated and
Manual Control

Text = "Requirement”
[

is in Motion

Text = "Requirement”

<<requirementz>
Able to be Turned
Off to Save Power

Text = "Optional”

Figure 1: SysML requirements diagram for autonomous rover project

1.2 Project Management & Inter-module communication

Text = "Reguirement”

<<requirement>>

and Buildings

Calculate Distance
L | and Angle of Aliens

Text = "Requirement”

In the beginning of the project, each project member was allocated a subsystem. Initially, the roles were
split in a way that meant that team members were matched to their strongest subsystems. However,
these roles were flexible and reshuffled to ensure that responsibilities were appropriately allocated to

the highest priority subsystem.

There were biweekly full group meetings to monitor progress and specify goals for the week, and a
Gantt Chart [Appendix A] outlined the overall project plans. A Trello page including each subgroup’s
weekly tasks and relevant documents ensured that all group members remained updated and one-to-
one subgroup communication and collaboration occurred throughout the week on WhatsApp, Microsoft

Teams, and on campus.
2 Command Subsystem

The Command subsystem consists of a webapp,
which displays battery level and a live map of the
arena, a mobile app, which allows inputs from the

user, and a TCP server which communicates with
the rover and mobile app as well as functions to

process data for the webapp and for the rover.

Inputs from
app
'TCP Fom App:
IDA MoV lM ODE
POS
TCP from
s TCF SERVER| Server Files Website
MoV XY,
angle{rover),
RETURN colour,
angle{alien), f
distance mapipg
Draw Map
modify
Return
BalLevel | Levelis
estimation
MODE
AUTOMATION
MOV

Figure 2: Command system architecture

4

2.1 User Interface

MARS ROV=R DASH30ARD

2.1.1 WebSite Battery Level Arena Map

S .
The web application is composed of a front

end running on a JavaScript React]S
framework, as well as a back end in python.
React]S was chosen for the front end as it is
non-blocking and constantly refreshes upon
any change made to the front end sent from the
back end. Through updates from the back end,
the real time arena map and battery level are
received to display on the web browser.

Figure 3: Web application front-end
2.1.2 Mobile Application

The mobile application is made up of a React-Native front end and a Python
Flask back end. React-Native was chosen for our front end as it is the mobile Mars Rover
app version of React, giving us the same advantages as with the website. The
front end sends data to the back end using a POST (REST-API) request from the
front-end modules and a POST response in the Flask back end for two routes -
‘move’ (manual rover movements) and ‘mode’ (auto/manual).

Forward

The mobile application is designed to control the rover using a switch to toggle
‘manual’ or ‘auto’ mode. In the case where the ‘manual’ mode is selected, left, B ackwand
right, forward, and backward buttons allow discrete movements of the rover.
In addition, it sends user inputted initial conditions to adapt the rover’s start [} EEE) R R
position required at the beginning of ‘auto’ mode. A python Flask framework

was chosen, because by using Flask it would be easy to integrate a TCP client
with the REST AP], this is needed to facilitate the forwarding of data, inputted
by user, from the mobile app to the TCP server.

Figure 4: Mobile
2.2 Data Processing application front-end

Data processing is made of several python components which takes the relevant data from a TCP server
and creates visual data for the user or dictate what the rover should do.

2.2.1 TCP

A TCP server was chosen because a stable, reliable connection to the rover must be prioritised. It also
allows monitoring of the connection status, whereby if the connection drops for too long, it acts as a
trigger to indicate to the rover to return to base. In addition, packets don’t drop frequently, and key data
arrives in order.

The TCP messages are designed in a purposeful manner so that a short ‘opcode’ is received immediately
before any incoming data, which acts as an identifier for different message types. As such, the TCP
server processes data depending on what opcode is sent and ignores messages if they are formatted
incorrectly. For instance, “IDA” (Identify Alien) takes in the distance and a ball colour code which is
plotted on the arena map. The command subsystem receives Messagel: “IDA”, Message2: 34",
Message3(1) to say the red ball is 34cm away in the direction of the rover. ‘Dead zones’ are created at
these locations to indicate where the rover cannot go.

204

-20 4

-40

Sophisticated error handling was also implemented to prevent any potential server crashes should any
undefined behaviour occur. This allows for a more robust setup in the face incorrect data being present.

[1]

Mapped Unknown 2.2.2 Mapping
’ The map processes two forms of data given by the rover: the
rover position and angle, and the colour and distance of an
alien object. It then maps them onto a pyplot graph which is
saved and stored in the website files after every edit; this
automatically updates the servers display of the map using
REACT’s auto refresh function. In addition, the Alien and fan
data is stored in arrays which can be accessed by the
N ' automation functionality to avoid ‘dead zones’ - zones the
rover must avoid, before deciding a possible path. [2][3]

—40 =20 0

Figure 5: Arena mag

2.2.3 Automation

The automated navigation of the rover is designed
so that the rover moves to predetermined points to
scan the map. These points, along with the actions
the rover takes at these points enables the vision
subsystem to sweep the entire course with little
overlap, while ensuring every part of the arena is
scanned.

Figure 6: Planned route of automation

x A start point and possible radar point. Upon reaching the point it will turn on the radar turn 65
degrees to look for balls in the corner. Then turn back, turn off the radar and continue onwards.
x A midpoint of the longest length of the arena, a sweeping scan is done here to cover the most
ground.
x Points in the middle of the arena. Once the rover reaches these points it will do a 360 to cover
the rest of the space.

To navigate from one point to another point, the A*
0 . . nput s [e neares! A algorithm '0Cess jenerate
algorithm is used to find the shortest route between | "o | %orommas] e > TS = cnmance

continue

a start and end coordinate. The A* algorithm
requires the arena map to be represented by a
360x240 matrix, corresponding to the dimensions

scan alien

of the arena in centimetres. The matrix is first .

recalculate
initialized with zero elements. Once an alien or deadzone | face nex poir
building is detected, the coordinate of an obstacle is syeep 360 -

processed by implementing a circle of 1’s in the
matrix elements around the coordinate using the
equation of a circle and modifying elements within

turn 180 right [€—{ turn 180 left

a chosen radius. This then allows the A* algorithm

to identify the 1’s as dead zones that must be routed tam ot <) ot g aegtess o <] U™ o acar
around if they lie between the start and end points B

that the rover is currently moving between. Figure 7: Automation flowchart

The A* algorithm was chosen over Dijkstra’s algorithm as both algorithms eventually find the shortest
path between two points, however the A* algorithm is less complex computationally, since it employs

6

a heurist function which considers estimated low-cost routes first, instead of Dijkstra’s algorithm which
considers all routes.

The output of the A* algorithm is an array containing the coordinates of the generated route, however,
since the A* algorithm works with a matrix, the route generated can only consist of small journeys
horizontally or vertically, rather than straight lines at other varying angles, which have a shorter
distance. Therefore, to optimise the rover path, a post-routing algorithm that smoothens the
unnecessary perpendicular segments was designed. A range of algorithms were tested by testcases
made from different start/end coordinates and dead zones created on a test matrix. At first, a smoothing
algorithm was implemented to smoothen out the small perpendicular line segments by applying
weightings on an error correction algorithm which smoothed segments that lay below a threshold.
However, this still resulted in angle differences between points that could be represented on a straight
line and so would need further processing if used, which wasn’t ideal. Hence, a post-routing algorithm
was designed to reduce the array of coordinates generated from the A* algorithm to only contain critical
points that approximate the boxed-out route to straight lines. The routes of the two algorithms
considered were plotted over testcases along with the A* route’s output to compare the post-routing
algorithms, which led to choosing critical point estimation due to its more optimized and accurate
results, as it compares the gradient of each line segment and compares their gradient difference to a
threshold to extract the main points and reduce the number of commands sent to the rover. The critical
point estimation algorithm returns an array representing the coordinates on the optimized path and is
passed into a function that iterates over the points in the array and compares pairs of corresponding
points to extract the angle and magnitude of each line segment. The angles and distances of each line
segment are then passed to the TCP server to send the commands to the ESP32. [4][5][6]

During a traverse, if vision detects an object, it will temporarily take control and identify the object.
Once identified relevant information is sent from the rover to the server to plot aliens or to add dead
zones to the A* map’s matrix. Then, Command recalculates the path to the next point and follows the
new path, in case the current previously calculated path entered a region that is now a ‘dead zone’.

3 Drive Subsystem

The drive subsystem is primarily responsible for the movement of the rover and communicates with
the command subsystem to receive the desired direction and distance to move. The subsystem uses an
optical sensor to ensure that the movements are accurate, as well as to send to the control and command
subsystems the rover’s current position.

3.1 Optical Sensor

The optical sensor is used to track the rover’s current position in terms of distance travelled and angle
rotated relative to the starting position. The initial system consisted of the optical flow sensor sending
to the ESP32 via SPI an x value regarding its current angle compared to the starting angle, and a y value
which measures the distance travelled forwards as positive and backwards as negative. X is measured
in degrees and Y is measured in cm. The values outputted by the optical flow originally did not conform
to any unit measurement and so scale factors were found experimentally.

Since the angle rotated and distance travelled need to be updated as frequently as possible to ensure
the drive and rotate commands are accurate and up to date, the second core of the ESP32
microcontroller was utilized by multitasking the optical sensor measurements onto the unused core.
This allows the system to have a constant loop running in parallel to the control system that solely takes
optical sensor data and updates the rover’s angle and location for the motor control system.

3.2 Motor Control

Next, the motor control system used to either rotate the rover in place for a given angle or move the
rover forwards or backwards a certain distance was designed. To deal with actual motor commands,
the Robojax_L298N_DC_motor module was used, whereby each wheel can be instructed easily to move
either clockwise or counter clockwise with a given power.

When designing the system to execute rover rotation, trial and error code was initially used to rotate
the rover in place. To increase precision, a basic feedback system was designed using the rover’s current
angle (x value), provided by the sensor, and the given target angle. If the target angle is larger, the rover
rotates clockwise, else the rover rotates counterclockwise. By using a slower speed of rotation and the
fast rate of optical sensor updates, the subsystem required no further developments.

The design for moving in a straight line for a specified distance requires both moving the set distance
and maintaining a constant angle. To ensure the rover braked or adjusted its distance when required, a
simple feedback system was designed in a similar way to rover rotation but using the y value. To ensure
that the rover remained in a straight line, a PID controller was used which uses the rover’s current x
value (angle) to calculate an error to be applied to the power of each motor, moving the x value towards
the desired angle specified at the start of the command. The coefficients used in the PID code were
calibrated using trial and error. [7]

4 Energy Subsystem

The objective of the energy subsystem is to design and create a charging station for the rover where the
USB battery is charged by solar panels as efficiently as possible.

¥ * * * LB+ AT sl]] 2
PV PV PV PV Boost_SMPS —S
panel panel | |panel | |panel (MPPT) (Charging channe| USB Battery
- - - - control) relay *
’_,B_ Al Ja B |l

Figure 8: Design of energy subsystem

4.1 Photovoltaic Panels

PV Panel |-V Characteristics PV Panel P.V characteristics
0.04 & o ©® o 0 0 0 o %, —8— Panel A 02 —8— Panel A
—e— Panel B *® —a— Panel B
® 8P e S ww @ .“ Panel C 05 * .‘ Panel C
03 5
0.03 eeee © o000& —e— Panel D . bl ™ :;\ —e— Panel D
< ! S R
s 0.02 ' 5 01] \
) = e % g e
3 . & .« ®e® -
« e’
0.01 0.05 os e
’ L]
b\
0 —— 0 ——
0 2 4 6 0 2 4 6
Voltage (V) Voltage (V)
Figures 9: Current-Voltage Figure 10: Power-Voltage characteristics of
characteristics of PV panels the PV panels

The I-V characteristics of the four PV panels model them as a current source in parallel with a PN diode,
with a maximum power point. The corresponding maximum power voltage is between 4.62V and 4.9V
for each PV panel.

The three design options considered for the PV panel array were parallel, series, and a parallel-series
combination:

mp mb
a8
Ir m> |
B 'l el B8 ima
8w s B
T - 9]
L T i 3 _

Figure 11: Parallel, Series and Series-Parallel PV

3
v

In situations of stable irradiance, both the parallel and series configurations operate with similar power
outputs; the series will have a higher voltage, and lower current output, whereas the parallel will have
a higher current and lower voltage [8]. However, choosing the series configuration would restrict our
subsequent design options due to its high voltage output: the maximum input of the Buck SMPS is 8V,
so the first SMPS could not be a Boost SMPS as it would increase the already high PV voltage. Therefore,
the design options for a series PV array would require a Buck SMPS first followed by either a Boost
SMPS or a Buck SMPS.

An additional issue arises when considering partial shading, which has a greater effect on a series PV
array. If one panel is operating at less than 100% power, all the panels will be affected whereas with
parallel, the other panels can still operate at 100% power. [9]

Parallel-Series Array Partial Shading Parallel Array Partial Shading
0.08 oo™ —8— P-V plot 02 o % —e— PV plot
]
(] L]
o L]
0 0.15 .
’ ° ... *
z ° z * e
g 0.04 o . T 01 R
& ? &
b L]
0.02 . 0.05
[]
0
’ 0 1 2 3 4 0 1 2 3 4 5
Voltage (V) Voltage (V)
Figure 12: Parallel-Series with bypass diodes Figure 13: Parallel in partial shading

A potential design solution was the parallel-series combination (which has a less significant effect from
partial shading than series) combined with bypass diodes. However, this resulted in two maximum
power points with one at a much lower voltage. To resolve this, adding an additional slow loop to our
MPPT code was considered, which would increase the duty cycle by a large amount to push the voltage
back up to the second maximum voltage point in case of partial shading. However, to ensure that the
design also considered simplicity, the parallel configuration was chosen. Although a parallel array
requires a larger minimum voltage to operate, which affects the panels in situations of lower irradiance,
it is less affected by partial shading. A smaller decrease in output power is exhibited in comparison to
the series and parallel-series configurations.

The output voltage of the parallel PV array at its maximum power point is close to the input voltage
range of the USB battery (4.5V to 5.2V). Therefore, the complete system would need to include both a
Buck SMPS and a Boost SMPS to prevent the output voltage of the second SMPS from increasing or
decreasing too much. The final design implemented is a Boost SMPS followed by a Buck SMPS because
there is greater control over the final output voltage. If the second SMPS was a Boost SMPS (which is
more unstable), it would be more difficult to predict the voltage and therefore implement the charging
control.

4.2 Maximum Power Point Tracking

The variation of irradiance on the photovoltaic panels results in varying voltages and currents. This
affects the output power of the panels. The objective of the MPPT algorithm is to use the Perturb and
Observe method to push the system to operate around the maximum power point and therefore ensure
maximum efficiency, by continuously modifying the duty cycle.

The code includes a fast loop and a slow loop. The fast loop measures the input voltage and current to
the SMPS and the slow loop uses states for the Perturb and Observe method. The code also limits the
maximum output voltage to 7.5V so that the following Buck SMPS remains operational.

The MPPT code has three states: state 0, where the duty cycle is set to 0, essentially turning off the SMPS.
This permits a level of manual control using the OL-CL switch. When

the system reaches state 1, the duty cycle decreases and when it K\ dP New State
reaches state 2, the duty cycle increases. The algorithm uses the |- - 2
measurements of voltage and current (and therefore power) from the | - + 1
fast loop and compares them to the previous voltage and power. The | * - 1
corresponding states are described for positive and negative changes + 2
in voltage (dV) and power (dP) in figure 14. Figure 14: MPPT state table
4.3 USB Battery Charging
USB Battery Characteristics USB characteristics
2 : —e— |-V plot 10 ’0 —e— Power
15 f 4 f H
— e L
< . g ¢ .
s ! & g o
3 L & 4 .
- L]
05
[] 2 L
4 s}
0 . o 20 eqeed 0l o o e sgeed |
0 2 4 6 0 2 4 6
Voltage (V) Vinttama (141
Figure 15: USB battery I-V characteristics Figure 16: USB battery P-V characteristics

Within the USB input voltage range, as voltage increases, the current drawn by the battery also

“increases, and the charge time decreases (since the battery capacity is 5000mAh). This behaviour must
be controlled since the maximum power available from the photovoltaic panels is approximately 4.6W.
At the maximum voltage of 5.2V, for example, the current drawn is approximately 1.9A which equates
to 8.55W. Since the wattage is not available from the input, it results in a large voltage drop from the
solar panels to less than 0.1V.

The solution was to control the current drawn using the Buck SMPS input voltage. An additional load
line was created to set a reference voltage of 7V, which aligned an input voltage of 7.5V to an output

voltage of 4.8V and an input voltage of 6.5V to an output voltage of 4.5V, using the equation: § = “//—0
Buck SMPS Load Line Buck SMPS Load Line '
—a— Duty 5
] Cycle
Duty
0.68 Cycle = 43
-0.052"

Qutput
Voltage
Qutput
Voltage =
0.299*
Input
Voltage
(V) +
2.561

Input

- Voltage
(V)+

. 1.032

Dutly Cyole (%)
Output Voltage ()
L5
T

6 6.5 7 75 8 6 6.5 7 75 8
Input Voltage (V) Input Voltage (V)

Figure 17 (left): Buck Duty Cycle vs Vi, and Figure 18 (right): Buck Vou vs Vin 10

This load line ensures that as the input voltage of the Buck SMPS increases, the output voltage also
increases, causing the USB battery to draw more current. This minimises the charge time whilst an
additional line of code (Appendix D) ensures the output remains within the USB voltage range by
reducing the duty cycle if the output voltage increases above 5.2V. If the increased voltage causes more
current, and therefore more power, to be drawn than is supplied, the system will undergo a dramatic
voltage drop, and so the input to the Buck SMPS will dramatically reduce. The load line at this point
results in the output voltage to also decrease dramatically. Consequently, the current drawn by the
battery decreases, therefore ‘reversing’ the voltage drop since the power required at the USB battery
input is no longer more than the power supplied.

As an additional safety precaution, a channel relay was inserted between the second SMPS and the USB
battery to restrict the input voltage of the battery to within its voltage range of 4.5 to 5.2 Volts. However,
the charge controller was still implemented such that the USB battery input voltage remains within the
range as much as possible. This prevents the relay from acting as an open switch and the battery from
not charging.

4.4 Battery Percentage

The energy subsystem also provides an approximation of the battery percentage to the command
subsystem. The capacity of the battery is 5000mAh, which equates to 25000mWh. Taking
measurements of the average current and power supplied to the main parts of the integrated rover, as
well as the power analysis of the FPGA produced by Quartus and the datasheet values for the ESP32
[10], enabled an approximation of the total output power from the USB battery:

Subsection Current (mA) Voltage (V) Power (mW)
Motor 125.8 3.3 415.14
Optical Sensor 157 5 785

FPGA - - 413.01
ESP32 500 3.3 1650

Radar 42 5 210

Total (without radar) | - - 3263.2

Total (with radar) - - 3473.2

Figure 19: Rover’s power consumption

From the above results, the approximate total run time of the rover is 7.5 hours. The average power
values are included in the capability code within the web app backend which uses the following
equation:

(25000 — (P t)+ (Py- tb)))
25000

Battery percentage =

Where Pq is the total average power with the radar turned off, Pp is the total average power with the
radar turned on and tq and t» are the respective total run times for both modes: ta and t» are updated as
the rover runs and as it switches between the two modes (radar off and radar on).

4.5 Range Capability

The rover’s displacement from the base (its starting point) is continuously updated using (X)Y)
coordinates. Using the rover’s average speed, the equation time = distance/speed, calculates the time
taken for the rover to return directly to the base in a straight line. Since the battery capacity equations
approximate the total possible run time of the rover, the ‘time remaining’ for the rover before its battery
runs out is calculated by subtracting the current ESP run time. If the time remaining is less than the time
required to return to base plus chosen buffer time, a message is sent to return the rover to the base. The

11

buffer time is required to account for any obstacles such as buildings or aliens that will require the rover
to adjust its route back to the base.

5 Radar Subsystem

The HB100 Doppler radar module was used to detect the blades of the fan, which rotate at 366Hz. This
radar module uses the doppler effect to locate the position of the fan beneath the arena. A signal of
frequency fo is sent, and one of frequency fo + Afis received, of which the Af component can be retrieved
and processed. The signal is first filtered and amplified to remove clutter, and then processed as a digital
input to send a signal to the control subsystem when the radar detects the fan.

5.1 Input Signal

\/\/\f fx/\/\f/l,f\f‘/\\/lf\/\\i-.‘_. f}/‘h\f‘\//“ f\‘/\rf\/\ f\lr_,r\f/\/‘

Y| ".,’ i Voo i\
V'V VY VAVAVAY

Figure 20: Input signal

The retrieved signal has a frequency of 366Hz, and an additional DC component caused by fo, i.e., -
100mV. When the radar module was placed next to the fan, an input signal of approximately 10mV
amplitude was measured. Therefore, to detect the blades, an amplification stage was required to
strengthen the received signal. The A-D converter of the ESP32 has a resolution of 12 bits, however,
since its pins are non-linear (Appendix E) [11] without amplification the signal would be almost
indistinguishable from background noise.

5.2 Measurements

Three main sources of noise for the radar
were observed. The first was the peak at
OHz, which represents the stationary
objects surrounding the radar. The second \

was the peak at approximately 50Hz caused ‘

by the mains power noise in th er ’WMWW ' Mwwwmmm MWM .w MW
background, and the third was white noise. ‘ ! | m (il ‘ ‘ |
Other visible frequency components were 1
general clutter, due to surrounding objects
such as electronic devices and people
entering and leaving the area. Since the
relevant frequency required was within the

(¢)

Figure 22: Radar signal frequency spectrum

366Hz region, a bandpass filter for clutter
rejection was necessary to eliminate noise at
unwanted frequencies. The signal shape .u:
observed in the time-domain plot was almost
sinusoidal, however, it was not a perfect

sinusoid due to the multiple rotating blades of the fan.

e T R A T O s I W W T R g W .

Figure 23: Input signal at a further distance

As the radar moved away from the target, the amplitude of the 366Hz peak decreased. This corresponds
to the effect of distance on the radar as described by the radar range equation, that the power received
by the radar decreases as the distance from the target increases by the ratio 1/R%.

12

The angle of the radar above the target also influences the magnitude of its output signal, and therefore
the distance from which it is possible to locate the fan. Directly above the target, the optimum angle for
the radar is 0 degrees (horizontal). However, when the radar is further from the fan, a more vertical
angle provides better detection by ensuring the radar signal incident on the target remains
perpendicular.

When moving around and sideways from the target, the peak on the frequency spectrum varied from
the 366Hz point. This demonstrates the effect of the rover in motion, being that the Af plot is
proportional to the velocity of the blades relative to the velocity of the radar, rather than solely the
velocity of the blades. This influenced the chosen bandwidth for the bandpass filter to ensure that the
relevant peak would not be attenuated due to small frequency changes from the motion of the radar.

5.3 Signal Processing

For the amplification and filtering, a 3-stage bandpass filter consisting of 2nd order bandpass filters with
multiple feedback was used. A 2-stage bandpass filter (Appendix E) was considered but was more
inaccurate due to its more gentle roll-off rate. A 4-stage filter (Appendix E) was also discarded because
its design was more complicated compared to the insignificant improvement in accuracy. Thus, the final

design was the circuit schematic shown in Figure 4, with the transfer function shown in Figure 5.

View:

10.0

Magnitude (dB)
P
S
°

Stopband region
S S S O o & S O O N S S L O O
© L' LY LU R R A G U S O O O o

Figure 22 (left): Circuit schematic of final filter design and
Figure 23 (right): Transfer function of final filter [12]

Frequency (Hz)

The gain at 366Hz + 50Hz is 40 dB, corresponding to a gain of 100 of the input signal.

By testing the filter at different frequency values, it was concluded that the design amplifies a small
window of frequencies (50Hz away from the centered frequency of 366Hz) and attenuates all other
frequencies.

Figure 24: Output when inserting a 366Hz signal Figure 25: Output when inserting a 500Hz signal

5.4 Analogue to Digital
The output of the filter is connected to port A0 of the ESP32, which acts as an A-D converter. It samples

the analogue value at a frequency of 840Hz to satisfy the Nyquist frequency requirements, since the
maximum frequency at the A-D converter input is 416Hz. When the output of the filter is greater than

13

the threshold voltage, the ESP32 sends a HIGH output to the control subsystem so that the fan can be
located on the map.

An alternative method was to connect a peak detector circuit directly to the output of the filter. A
capacitor removes the DC offset of 2.5V, the diode stop the capacitor from discharging during the
negative half cycles, and the capacitor in parallel with the resistor average the DC value of the peak. The
output of this circuit was then connected to the ESP32 port.

N.B Professor Bouchaala advised the group to include in the report that the radar module was broken and
therefore complete testing was not possible.

6 FPGA and Camera Subsystem

The objective of the FPGA and Camera subsystem is to use the rover’s camera to detect several aliens
(coloured balls) and alien buildings (black and white striped objects) and relay this information to the
control subsystem. To achieve this, the subsystem was broken down into three smaller objectives:

1) Identify unique objects of interest accurately using object detection algorithms, eliminating as
much noise as possible through adequate filtering.

2) Obtain accurate distance measurements such that the control subsystem knows how far the
objects of interest are from the rover.

3) Set up a communication interface where the FPGA can communicate this data with the ESP32
(control subsystem).

To accomplish the first task, data is passed through an image processor which modifies the input video
data and applies appropriate filtering and object detection.

6.1 Image Processor

The image processor can be separated into four main sections which have different functions for
processing the video data to achieve accurate detection of the objects of interest. The first reads video
data, including pixel position, pixel colour, and packet information. Pixel data is transmitted from the
camera to the FPGA one pixel at a time, from the bottom right to the top left of the current frame. Each
pixel has a varying 24-bit RGB value which can be separated into 8 bits for each colour. Secondly, there
is a colour detection sub-module to accurately identify the colours of the balls. Filtering is then applied
to filter out noise and allow for accurate object detection.

6.1.1 HSV Conversion

The first key design decision was to implement a conversion between RGB (red, green, blue) values to
HSV (hue, saturation, value). This was implemented in the module rgb_to_hsv.v. This conversion was
essential to our object detection algorithm because HSV is more robust in different lighting conditions.
Given the variable lighting conditions during testing and in the actual Mars arena, hue values vary less
than RGB values. The conversion was performed using a widespread Verilog implementation of an RGB
to HSV convertor. Credit to unknown author [13].

The thresholds for the hue, saturation and value for each coloured ball were developed through several
methods. Initially, simple thresholds from an online colour picker [14] were used to determine the
range of hue values for each of the coloured balls. These initial thresholds were tested in the arena to
simulate similar lighting conditions on the day of the demonstration. Adjustments were made using the
MATLAB colour threshold tool (see Appendix F), which provided a fast method to determine the hue,
saturation and value thresholds in the arena light conditions.

14

Figure 26: Light green and dark blue ball detection in arena

6.2 Filtering and Ball detection

The second stage in the object detection process was a suitable filter to filter out unwanted colours and
noise. Implementation of certain types of filters such as median 3x3 filter or Gaussian filter would
require large amounts of memory usage because pixels above and below would need to be stored and
accessed. Given the memory constraints on the FPGA and the fact that large amounts of memory stores
and accesses may affect frame rate, therefore increasing the delay between receiving a frame and
processing it, deliberate thought was put into the types of filters and techniques used to achieve
accurate object detection. Each filter was evaluated on its hardware complexity (thus also on power
consumption) and its capacity to remove background noise. The walls of the arena already reduced the
level of background noise by a substantial amount, leading to the decision to prioritise hardware
simplicity over filtering performance. As a result, complex edge detection algorithms, such as Sobel or
Canny edge detectors were not implemented. A median 3x3 filter was initially implemented due to the
promise that the colours within a 3x3 area of each pixel will produce accurate object detection; a greater
coloured pixel density compared to the background is most likely to be that coloured ball. This method,
however, requires buffering of entire rows of pixels which uses a large amount of on-chip memory.
Simpler filters were subsequently considered to reduce complexity. The second filter implemented was
a 5-pixel mode filter which takes in 5 consecutive pixels and evaluates the pixel to a ball colour if all 5
pixels are within one of the HSV colour thresholds - otherwise, it is evaluated to grey. This method
proved very effective at reducing background noise and computationally inexpensive. The third filter
implemented for comparison was a simple weighted average filter, which is an extension to the 5-pixel
mode filter, assigning higher importance to pixels closer to the current incoming pixel. This filter also
proved effective at reducing background noise though was evaluated to be more computationally
expensive than the 5-pixel mode filter. There was no noticeable difference in the effectiveness of
reducing background noise between the two filters. A performance comparison of the weighted average
filter and the 5-pixel mode filter can be given by the following power and timing analysis.

5-pixel weighted-average filter
Timing Analysis (MAX10_CLK1_50):

e Slow 1200mV 0C Model: 83.74MHz
e Slow 1200mV 85C Model: 74.32MHz

Power Analysis - Total power dissipated: 461.27mW Figure 27: Weighted average filter

5-pixel mode filter
Timing Analysis (MAX10_CLK1_50):

e Slow 1200mV 0C Model: 74.52MHz
e Slow 1200mV 85C Model: 68.36 MHz

Power Analysis — Total power dissipated: 445.31mW

Figure 28: 5-pixel mode
filter

15

Though both filters provided very similar results in producing accurate bounding boxes for object
detection, the 5-pixel mode filter achieved a slightly better performance and was implemented in the
final product. However, as it would be impossible to design a filter which removes all noise, to mitigate
the effect of any unremoved noise, additional logic was added to ensure that bounding boxes would
only form if the bounding box was approximately square shaped. That way, any anomalies would be
ignored.

6.3 Building Detection

The buildings to be detected are vertical cylinders consisting of vertical black and white stripes. Three
main cases were considered, each with increasing complexity: detection when there is only one building
in a frame, detection when there are multiple buildings separated by a space between them, and finally
detection of multiple buildings that overlap each other.

To deal with the first case, an algorithm was designed to scan each frame horizontally and count the
number of times there is an abrupt change in pixel colour from black to white or vice versa. The
algorithm was implemented using the same 5-pixel mode filter used for ball detection.

When implementing the case with multiple buildings separated by space, the solution was to simply
restart the building detection algorithm once a building had been detected, but then the colour of a pixel
returned to being neither black nor white. Since all stripes have the same width, if multiple buildings
were detected, the building with the larger maximum pixel stripe width would be chosen as the building
to be detected and measured, as it is closer to the rover.

Finally, an algorithm was implemented to find the closest building to the rover when there are two
overlapping buildings. As all stripe widths are the same for any given building, when scanning
horizontally along a building, stripe widths increase towards a maximum, and then decrease. This
meant that when the stripe widths start to decrease, if they begin to increase again before the building
ended, a new building has been detected. The maximum stripe width of each building was stored, and
the building with the largest stripe width would be chosen as the closest building.

6.4 Distance Calculations

Figure 29: Building detection

The distance between the rover and objects is calculated using the size of the bounding box generated
by the object detection algorithm. The distance calculation system calculates the distance between an
object and the rover only if the object is sufficiently in the centre of the camera display. If not, the drive
control system is used to rotate the rover until the object is centred.

The relationship D « W /P was used [15] where D is the distance from the rover to the object, W is the
width of the object, and P is the number of pixels between the minimum x pixel of the object and the
maximum X pixel. The constant of proportionality in this equation is the focal length of the camera, and
in this equation, the focal length has been approximated as linear. In reality, the focal length is non-
linear with respect to distance, however, to use ensure that this approximation is usable, any distance

16

calculations performed by the FPGA were set to only be valid between the range of 20-60cm, where it
was experimentally (see Appendix F) proven that the constant of proportionality only varied slightly.

The constant of proportionality, in this case WIP against Distance

the approximated focal length, was found 01 . WP
experimentally, by measuring and plotting WP =
graphs of W/P against D for a range of 0.08 < 14385
values and finding the gradient. As the . . 1 g;‘;‘”fe
stripe width of buildings is known and . 7494

WP (em)
L]

constant, the width of the largest stripe in
camera view was used as the P value. By .
also including the number of visible stripes
of the measured building in the
communications between the rover and 0 20 40 60
control, the size of any measured buildings Distance (cm)

could also be registered and mapped.

Figure 30: Graph of W/P against distance of a ball

Similarly, as the stripe width of buildings is known and constant, the width of the largest stripe in
camera view was used as the P value. By also including the number of visible stripes of the measured
building in the communications between the rover and control, the size of any measured buildings could
also be registered and mapped.

6.5 SPI Communication

SPI communication was used to handle sending data about the distance between the rover and objects
to the ESP32 control system, with the FPGA being the SPI slave and the ESP32 the SPI master [16]. The
FPGA either sends drive instructions to rotate the rover and centre the object in the screen or sends
object data that informs the rover of a detected ball’s colour and distance from the rover. To avoid re-
measuring ball colours which have already been measured, additional logic values were added to store
which colours have already been measured; if any of these colours are found again, the FPGA will ignore
them. (see Appendix F) for code.

7 Control Subsystem

The Mars rover was controlled using an ESP32 microcontroller running an Arduino script. The script
runs as a TCP client connecting to the TCP server in the web app back-end. The control script is
governed by states that are maintained using Boolean variables which affect the conditions of if-
statements that manage the transition of each state - making the control script analogous to a state
machine.

7.1 Drive

The microcontroller waits for a message from the TCP server and then updates a Boolean variable once
the message is received. This then allows the control flow to transition to the state where the command
received from the server, either a target distance or angle, is passed to the drive functions that control
the motors.

The optical sensor is designed to continuously send the rover’s current distance and angle position to
the TCP server in the web app back-end by sending an encoded message over the existing TCP socket.
The optical sensor measurements and TCP communication are run in parallel to the rest of the
processing on the script by utilising the second core on the ESP32 to perform multitasking, which
allows for the measurements to update at a faster rate and hence send a position to the server that
closely maps the actual position of the rover.

17

7.2 Radar

The control module returns the value 1 if there is a fan and O if there is no fan and then forwards it to
the TCP server. In addition, when ‘ARA’ or ‘DRA’ is received from the TCP server it turns the radar on
and off, respectively, to save power.

7.3 Vision

To avoid message complexity, only three sets of information are sent to the control subsystem from
vision. The vision subsystem determines if there is an object in view and determines which is closest. It
then sends a message to the control subsystem to indicate if the rover must adjust its rotation left or
right to point directly at the object in question for a clearer reading. Once the rover has adjusted
accordingly, the vision subsystem sends a message indicating the colour of the ball and the distance of
the ball from the rover. The control subsystem sends an acknowledgement back to vision to indicate
that the object in question has been registered.

8 Integration

MPPT +

The method of implementation of = T R e -
modules was done in the order implied
by the following diagram. ey

Map Refining TGP

The way we approached the overall > Generation > AUtomanen = comunication
project was by implementing module ‘

components, testing them so that they
meet the basic standards of the project

. . User inputted
‘Website | —— TCP Server —» Mobilz App —» Movement

then moving on to the next components. i '
This way the rover was slowly built up — Joe movemert, ——>{ P
= —* Movemen
and merged to achieve a final product et (e5932) ; 0
v Ly tere) TOP
9 Conclusion: _ el e = iy
Ao —» Opictow (esp32) e =
In evaluating the use of the hardware | fitsring for I
. ~» bounding >
provided, we reduced the need of westing Doses dstance
g . 5 —» bound —
additional hardware by exploring ®mn vowes. |
methods to optimize the software [Lbuidng
implementations where possible. This
allowed for a greater focus on achieving | i ansiouga'a tecton

L diglal —>

the project requirements by tending "= —— converter code
towards the minimal viable product, in]‘

order to achieve cost effectiveness and \—'Z’;']E:“:;’;,TLT

compactness. Each subsystem in the

rover can execute any tasks assigned by the
specification, and the control system and

sophisticated automation process allowed these tasks to perform harmoniously in performing the
action of scanning an unknown arena.

Figure 31: Implementation diagram

For future work in the energy subsystem, the battery’s state of health and its effect on its discharging
behaviour would be considered in the battery percentage calculation algorithm to improve rover run
time accuracy. Another design change that was considered throughout the project was a gyroscope, to
deal with optical sensor uncertainty, however a well-designed PID controller was able to decrease
uncertainty regarding imprecise drive functionality.

18

Bibliography

[1]"TCP Chat in Python - NeuralNine", NeuralNine, 20109. [Online].
Available: https://www.neuralnine.com/tcp-chat-in-python/[Accessed: 16- Jun- 2022].

[2]A. Qassim, "Easy Steps To Plot Geographic Data on a Map—Python", Towards Data Science, 2019.
[Online]. Available: https://towardsdatascience.com/easy-steps-to-plot-geographic-data-on-a-map-
python-11217859a2db. [Accessed: 14- Jun- 2022]

[3]"Matplotlib documentation — Matplotlib 3.5.2 documentation”, Matplotlib.org. [Online].
Available: https://matplotlib.org/stable/index.html. [Accessed: 16- Jun- 2022].

[4]N. Swift, "Easy A* (star) Pathfinding", Medium, 2017. [Online].
Available: https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2.
[Accessed: 19- Jun- 2022].

[7]). Cook, "PID Controller Basics & Tutorial: PID Implementation in Arduino", arrow.com,
2019. [Online]. Available: https://www.arrow.com/en/research-and-events/articles/pid-controller-
basics-and-tutorial-pid-implementation-in-arduino. [Accessed: 17- Jun- 2022].

[8] N. Yarbrough. (2021). Solar Panels - Series or Parallel? [Online].
Available: https://www.explorist.life /solar-panels-series-vs-parallel/

[9] M. Aravinda and K. Padmavathi, "Simulation study of partial shading effect on series, parallel and
series-parallel connected PV modules," 2017 International Conference on Smart grids, Power and
Advanced Control Engineering (ICSPACE), Bangalore, India, 2017, pp. 1-10

[10] Expressive Systems, “ESP32 Series Datasheet”, 3.9, Aug. 2016 [Revised Mar. 2022].
Available: https://www.espressif.com /sites /default/files/documentation/ esp32 datasheet en.pdf

[11] Random Nerd Tutorials. (2019). ESP32 ADC - Read Analog Values with Arduino IDE
[Online]. Available: https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/

[12] Tools.analog.com. (2022). Filter Design Tool | Filter Wizard | Analog Devices. [online] Available
at: https://tools.analog.com/en/filterwizard/ [Accessed 23 June 2022].

[13] Programmerclick.com. n.d.rgb a hsv (Verilog) - programador clic. [online] Available at:
<https://programmerclick.com/article/54951095995/> [Accessed 13 June 2022].

[14]N. Eduardo Lundgren, "Color Picker - HSV Palette Example | AlloyUI", Alloyui.com. [Online].
Available: https://alloyui.com/examples/color-picker/hsv.html. [Accessed: 16- Jun- 2022].

[15]A. Rosebrock, "Find distance from camera to object using Python and OpenCV", PylmageSearch,
2015. [Online]. Available: https://pyimagesearch.com/2015/01/19/find-distance-camera-
objectmarker-using-python-opencv/. [Accessed: 15- Jun- 2022].

[16]"fpga4fun.com - SPI 2 - A simple implementation”, Fpga4fun.com. [Online].
Available: https://www.fpga4fun.com/SPIZ2.html. [Accessed: 18- Jun- 2022].

19

Appendix A: Project management

Mars Squad 2022

PGB2 Project Start: 23052022
Aleera Ewan/Rohan Gandhi/Valia Giannopoulou/ Today: 2H0E2022
Anthony Jones/lames McManus/Omar Zeidan/ Dizplay Week: 1 May 23, 2022 May 30, 2022 Jun B, 2022 Jun 13, 2022 Jun 20, 2022 Jun 27, 2022
Sam Hesketh Fatchen HoBH B B B B B3 1 230456 78 910112134 516171819 %20 #[u|e 8 ee sz
ASS.II.%"ED PROGRESS START DAYS | M| T | w
Command
Wweb Development WO% | 2R 2H0N2022 A
Tep Cormurication WO% 2MORANZ2 1R0R2022 ® S
Aulomation WO% HORC022 240R2022 1]
Drive
Motor Code W0 ZN0R202Z 2H0R20Z2 L
Optical Sensor W0% AV0S2022 (I0E2022 5 [
PID Implementation WO% TOR2022 1R0R022 3 []
PID and Molor Calibration W0 TH0RZ022 2H0R2022 0

Energy
P testing 1003 2H0H2022 3002022 g

MPPT code WO% 24082022 OHR2022 s |

LISB testing and cocls 0% | 02082022 OMOR2022 5 [
Full subsystern integration 0% 0M0RZ022 1H0R2022 ©]

Energy Capability W0% | AORC022 2A0R2022
Vision
Colour cerversion and detecting alisrs WO 202022 IV0SZ0Z2 > EEE
Filtering noise W0% 3W0H022 0S0E2022 5 I
Commurication with ESP32 W0% | ONDE2022 DROR2022 3 |
Bilding delestion W% NE0RENZ2 TA0RE022 [
Diztance calculations [buildingz and aliens) 00z ORHORZ022 19062022 _
Irnprovernents in object detection 10034 T20RZ2022 2A0R2022 & _
Control
Contral Flow structure Wo% | ZI0R202Z 3NOR20Z2 s L
Integration with crive W% OROS2022 T20H2022 7 []
Integration with vision 003 NOE2022 1062022 4 -
Integration with radar 0024 1H0R2022 2062022 4

Radar
Radar modle tesling W0% OR0S2022 THRZDZ2 3 [|

Amplificstion and filter design and implementation WO IH0H2022 2NOR2022 5 I
A-D corwersion and location cods 00z IVOE2022 TR0R2022 7 _

20

Appendix B: Command

Smoothening Algorithm vs Raw A* Algo Algorithm

80

60

Orange Smoothening Algorithm
Grey A* Algorithm Output

0 20 a0

Result of smoothing the A* algorithm route

120

100

Critical Point Algorithm vs Raw A* Algo Algorithm

Critical Point Algorithm
Grey A* Algorithm Output

20 40 60 80

Result of critical point estimation of the A* algorithm route

100

30

120

21

Appendix C: Drive

Y-Axis Calibration
(Distance)
real real dist
Data | start realend | distance | measured | measured | travelled
set | (cm) (cm) (cm) start (cm) | end (cm) (cm) scale factor
1 61 100.3 39.3 -932 -2672 1740 0.022586207
2 50.2 91.2 41 -2227 -4053 1826 0.02245345
3 31 71.3 40.3 -3296 -5088 1792 0.022488839
4 31.4 71.7 40.3 -4835 -6674 1839 0.021914084
5 28.1 70.7 42.6 -6543 -8428 1885 0.022599469
6 32.2 74.4 42.2 -8206 -10092 1886 0.022375398
Average Y
SF 0.022402908
X-Axis Calibration (Angle) ‘
Travelled
Data set angle (deg) initial x final x dx scale factor
1 90 81 -1049 1130 0.079646018
2 90 -792 -1937 1145 0.07860262

3 90 -959 -2080 1121 0.080285459

4 90 -1096 -2216 1120 0.080357143

5 90 -1136 -2256 1120 0.080357143

6 90 236 -928 1164 0.077319588

7 90 126 -1017 1143 0.078740157

8 90 -235 -1344 1109 0.081154193

| Average XSF | 0.07955779 |

Experimental Values to Calibrate the Optical Flow

22

Appendix D: Energy

//Vmax=5.2

if(Vout>Vmax){
dutycyle-=0.05;
}

Charging Code Limiting Output Voltage

23

Appendix E: Radar

Voltage vs ADC Reading

4000

3000

2000

10 020 030 040 050 060 070 080

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 100 310 320 330

A-D Converter

2: 2-stage Bandpass Filter Design and Transfer Function [REFERENCE NUMBER 2]

Stage A Stage B
2nd order 2nd order
Band-Pass Band-Pass
Multiple Feedback Multiple Feedback
1l 1L
1T ir
3nF 6.2nF
2 17.6kQ $18.9kQ
538kQ . 578kQ L
IN —WA T] AMA Tt ouT
3nF 6.2nF —
+ +
LTC6255 :é 2.31kQ LTC6255 E 3.41kQ
3
S 133kQ S 196kQ
REF What's This? L

10kQ

=

<+
G2

I
!

g

10uF 100nF 10kQ 10uF 100nF
ADB8031
uim
4.99kQ
Band-Pass
= 2
Passband (OB V" | Magnitude (dB) v
in: 50.0
Gain: 40 dB v T
— =
-3 dB 400 Hz 400Hz
- 40.0 Gain=40dB__ __ Passband ripple = 0.02 dB
Stopband (©)
-40 dB 4k Hz 30.0
Center Frequency
o
o 200
366 Hz S
°
= B
Filter Response @ é 100
=
Fewest Fastest 0.0 |-40dB down -40 dB down
Stages Settling
4th order Chebyshev 0.02 dB -10.0
(2 stages)
33.2Hz 4th order Chebyshev 0.02 dB 4.03kHz
~20.0 |Stopband region (2 stages) Stopband region
N) O N N & &
L) S N S N O 9 o

Frequency (Hz)

3: 4-stage Bandpass Filter Design and Transfer Function

Stage A Stage B Stage C Stage D
2nd order 2nd order 2nd order 2nd order
Band-Pass Band-Pass Band-Pass Band-Pass
Multiple Feedback Multiple Feedback Muttiple Feedback Multiple Feedback
L IL Il JL
r ir r r
4.3nF 4.3nF 3.9nF 4.7nF
985kQ 1.04MQ 1.05MQ 985kQ
218kQ §i 230kQ i 402kQ 5 379kQ P
43nF - 43nF - 3.9nF - 4nF =
+ [+ [+ [+
10.3kQ LTC2067 150kq 10.9kQ LTC2067 162kq 10.7kQ LTC2067 155k 10.1kQ LTC2067 166kQ
REF | REF | REF | REF
o 1.96kQ 2k 2.61kQ 2.8kQ
% REF — REF REF REF
10kQ
5V
J- J- —l—l—m
10uF 100nF 10kQ Proden 10uF 100nF
UM
4.99kQ
Band-Pass
Passband 2 View: | Magnitude (a8) v
Gain: 40 | dB v 50,0
gl Passband region SR
-3 @B 50 Hz S0Hz
400 Gain» 4008 P fipple » 0.06 ¢8
Stopband ?
-3 B down
-40 ¢8 200 Hz 30,0
Ceonter Frequency
200
366 Hz s’
Filter Response ? g 100 366Hz
Fowest Fastest 0.0 |<0dBdown 40 dB down
Stages Settling o 2004z =>
&th order Chobyshev 0.06 08 =100
(4 stagos)
&h order Chebyshey 0.06 @B p
-200 |Stopband region {4 stages) Stopband regicn

Frequency (Hz)

Appendix F: Vision

MATLAB HSV calibration

if(byte_data_received == 1 | no_red_ball_counter > 3)begin
outbuffer <= 0;
r_ball_watching <= 0;
distance_measure_active <= 0;

if(byte_data_received == 1) begin
r_ball_registered <= 1;
end

end

Logic declaring when to set that the red ball has been registered on the map based on the value of
ESP32 input

Distance Xmin Xmax w
15 243 423 180
20 267 405 138
25 280 388 108
30 303 392 89
35 298 378 80
40 310 377 67
45 284 346 62
50 304 361 57
55 311 360 49
60 315 364 49

Experimental data gained when finding the focal length of the camera in a range of 20-60cm by
measuring pixel width against distance from ball to rover

26

